On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Department of Mathematics, Zhejiang University lblmath@163.com

Dec 20, 2006

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metric

Flag Curvature

Frojectively Flat Finsler Metrics

 α, β)-Metrics

ne Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Fla (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Introduction

One of important problems in Finsler geometry is to study and characterize Finsler metrics of constant flag curvature. Another problem is to study and characterize projectively flat Finsler metrics on an open domain in \mathbb{R}^n . In Riemannian geometry, these two problems are essentially same by Beltrami theorem. However, there are locally projectively flat Finsler metrics which are not of constant flag curvature; and there are Finsler metrics of constant flag curvature which are not locally projectively flat. It's a natural problem to discuss the projectively flat Finsler metrics with constant flag curvature. (α, β) -metrics is a computable class in Finsler metrics. It's interesting to classify the projectively flat (α, β) -metrics with constant flat curvature. In this lecture, I will introduce the recently result by Dr. Zhongmin Shen and me.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

rinsier Metrics and Geodesics

lag Curvatu

Projectively Fla Finsler Metrics

 x, β)-wietrics

ne Kelatic

rojectively Flat $lpha,\,eta$)-Metrics

tamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

lassification

n Open roblem

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics

and Geodesics

Projectively Flat Finsler Metrics

 $,\beta)$ -Metrics

e Relation

rojectively Flat (α, β) -Metrics

xamples

rojectively Flace, (β) , Metrics ith Constant lag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Finsler metric:

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

Flag Curvature

or Market

Ph. Deleties

Projectively Flalpha,eta)-Metrics

xamples

rojectively (x, β) -Metri

Flag Curvature Projectively Flat (lpha,eta)-Metrics

Classification

An Open Problem

Finsler metric: $F:TM\to R$ has the following properties

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

lag Curvature

Finsler Metrics

 (α, β) -Metrics

ne Relation

rojectively Flat (α, β) -Metrics

amples

rojectively Fla (x, β) -Metrics ith Constant lag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

 $r = (\alpha + \beta)^2 / \alpha$

Finsler metric: $F:TM \to R$ has the following properties

 $F \text{ is } C^{\infty} \text{ on } TM \setminus \{0\},$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

lag Curvature

insler Metrics

 (α, β) -Metrics

The Relation

rojectively Flat (α, β) -Metrics

camples

Projectively Flat lpha, eta)-Metrics with Constant Plag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Finsler metric: $F:TM \to R$ has the following properties

 $F ext{ is } C^{\infty} ext{ on } TM \setminus \{0\},$

 $F(x,y) > 0, \quad y \neq 0,$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

Flag Curvature

Finsler Metrics

 (α, β) -Metrics

he Relation

rojectively Flat (α, β) -Metrics

camples

rojectively Flat (α, β) -Metrics ith Constant lag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Finsler metric: $F:TM\to R$ has the following properties

$$F$$
 is C^{∞} on $TM \setminus \{0\}$,

$$F(x,y) > 0, \quad y \neq 0,$$

$$F(x, \lambda y) = \lambda F(x, y), \quad \lambda > 0.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics

and Geodesics

rojectively Flat

 (α, β) -Metrics

The Relation

rojectively Flat (α, β) -Metrics

xamples

rojectively Fla (α, β) -Metrics ith Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Finsler metric: $F:TM\to R$ has the following properties

$$F$$
 is C^{∞} on $TM \setminus \{0\}$,

$$F(x,y) > 0, \quad y \neq 0,$$

$$F(x, \lambda y) = \lambda F(x, y), \quad \lambda > 0.$$

The fundamental form $\mathbf{g}_y(u,v) = g_{ij}(x,y)u^iv^j$,

$$g_{ij} = \left[\frac{1}{2}F^2\right]_{y^i y^j} > 0.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

lag Curvature

rojectively Flat

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Finsler metric: $F:TM \to R$ has the following properties

$$F$$
 is C^{∞} on $TM \setminus \{0\}$,

$$F(x,y) > 0, \quad y \neq 0,$$

$$F(x, \lambda y) = \lambda F(x, y), \quad \lambda > 0.$$

The fundamental form $\mathbf{g}_y(u,v) = g_{ij}(x,y)u^iv^j$,

$$g_{ij} = \left[\frac{1}{2}F^2\right]_{y^i y^j} > 0.$$

Geodesics:

$$\ddot{x} + 2G^{i}(x,\dot{x}) = 0$$
, where $G^{i} = G^{i}(x,y)$ are given by

$$G^i = \frac{1}{4} g^{il} \Big\{ [F^2]_{x^m y^l} y^m - [F^2]_{x^l} \Big\}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

lag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

Projectively F

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

Problem

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metri

Flag Curvature

Projectively Flat Finsler Metrics

 α, β)-Metrics

he Relation

Projectively Flat (α, β) -Metrics

Examples

Projectively Fla α , β)-Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Riemann curvature: $\mathbf{R}_y(u) = R^i_{\ k}(x,y)u^k$,

$$R^{i}_{k} = 2\frac{\partial G^{i}}{\partial x^{k}} - y^{j} \frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} + 2G^{j} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metri

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Riemann curvature: $\mathbf{R}_y(u) = R^i_{\ k}(x,y)u^k$,

$$R^{i}_{k} = 2\frac{\partial G^{i}}{\partial x^{k}} - y^{j}\frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} + 2G^{j}\frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}}\frac{\partial G^{j}}{\partial y^{k}}.$$

Flag curvature:

$$\mathbf{K} = \mathbf{K}(P, y) = \frac{\mathbf{g}_y(\mathbf{R}_y(u), u)}{\mathbf{g}_y(y, y)\mathbf{g}_y(u, y) - [\mathbf{g}_y(y, u)]^2},$$

where $P = \operatorname{span}\{y, u\} \subset T_x M$.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metric

Flag Curvature

Finsler Metrics

(--, /-) ------

The Relation

Projectively Flat (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Fla (α, β) -Metrics with Zero Flag Curvature

Classificatio

An Open Problem

Riemann curvature: $\mathbf{R}_{y}(u) = R^{i}_{k}(x, y)u^{k}$,

$$R^{i}_{k} = 2\frac{\partial G^{i}}{\partial x^{k}} - y^{j} \frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} + 2G^{j} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}}.$$

Flag curvature:

$$\mathbf{K} = \mathbf{K}(P, y) = \frac{\mathbf{g}_y(\mathbf{R}_y(u), u)}{\mathbf{g}_y(y, y)\mathbf{g}_y(u, y) - [\mathbf{g}_y(y, u)]^2},$$

where $P = \text{span}\{y, u\} \subset T_x M$.

For a Riemannian metric $F = \sqrt{g_{ij}(x)y^iy^j}$, $\mathbf{g}_y = \mathbf{g}$,

$$\mathbf{R}_y(u) = R(u, y)y.$$

$$\mathbf{g}(\mathbf{R}_y(u), u) = \mathbf{g}(R(u, y)y, u) = \mathbf{g}(R(y, u)u, y) = \mathbf{g}(\mathbf{R}_u(y), y).$$
$$\mathbf{K}(P, y) = \mathbf{K}(P) \quad \text{(sectional curvature)}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -victics

The Kelatic

 (α, β) -Metrics

examples

 (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Projectively Flat Finsler Metrics

Projectively flat metrics:

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

insler Metrics

Flag Curvature
Projectively Flat

Finsler Metrics

- D-1-4:--

ojectively Fla $, \beta$)-Metrics

amples

ojectivel

rojectively Fl (α, β) -Metrics ith Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

n Open

Problem

Projectively flat metrics: $G^i = P(x, y)y^i$.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Tinelar Matri

r Curvetur

Projectively Flat Finsler Metrics

 $, \beta)$ -Metrics

e Relation

rojectively Fig. (x, β) -Metrics

amples

ojectively I, β)-Metrics

Projectively Flat α, β)-Metrics with Zero Flag Curvature

Classification

An Open Problem

Projectively flat metrics: $G^i = P(x, y)y^i$.

Another equivalent condition of projectively flat Finsler metric F = F(x, y) on an open subset $\mathcal{U} \subset \mathbb{R}^n$,

$$F_{x^k y^l} y^k - F_{x^l} = 0.$$

This is by G. Hamel.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

ojectively Fla $_{,\,eta}$)-Metrics

amples

rojectively Flace, (β) -Metrics ith Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Projectively flat metrics: $G^i = P(x, y)y^i$.

Another equivalent condition of projectively flat Finsler metric F = F(x, y) on an open subset $\mathcal{U} \subset \mathbb{R}^n$,

$$F_{x^k y^l} y^k - F_{x^l} = 0.$$

This is by G. Hamel.

The flag curvature of projectively flat Finsler metrics:

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

and Geodesics

Flag Curvatu

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

rojectively Flat (α, β) -Metrics

amples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

 $\text{ndicatrix of} \\
 7 = (\alpha + \beta)^2 / \alpha$

Projectively flat metrics: $G^i = P(x, y)y^i$.

Another equivalent condition of projectively flat Finsler metric F = F(x, y) on an open subset $\mathcal{U} \subset \mathbb{R}^n$,

$$F_{x^k y^l} y^k - F_{x^l} = 0.$$

This is by G. Hamel.

The flag curvature of projectively flat Finsler metrics: If $G^i = P(x, y)y^i$, then

$$\mathbf{K} = \frac{P^2 - P_{x^m} y^m}{F^2}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

Flag Curvati

Projectively Flat Finsler Metrics

 (α, β) -weirics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classificat

An Open Problem

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

 (α, β) -Metrics

$$(\alpha, \beta)$$
-Metrics

An (α, β) -metric is expressed in the following form,

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

 (α, β) -Metrics

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1, \quad \phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0,$$

where $b = \|\beta_x\|_{\alpha}$.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

$$(\alpha, \beta)$$
-Metrics

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1, \quad \phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0,$$

where $b = \|\beta_x\|_{\alpha}$.

Special (α, β) -metrics:

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1$$
, $\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$,

where $b = \|\beta_x\|_{\alpha}$.

Special (α, β) -metrics:

 $\phi(s) = 1, F = \alpha$, Riemannian metric.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat lpha, eta)-Metrics with Constant Plag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1, \quad \phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0,$$

where $b = \|\beta_x\|_{\alpha}$.

Special (α, β) -metrics:

 $\phi(s) = 1, F = \alpha$, Riemannian metric.

 $\phi(s) = 1 + s$, $F = \alpha + \beta$, Randers metric.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat lpha, eta)-Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classificatio

An Open Problem

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1, \quad \phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0,$$

where $b = \|\beta_x\|_{\alpha}$.

Special (α, β) -metrics:

$$\phi(s) = 1, F = \alpha$$
, Riemannian metric.

$$\phi(s) = 1 + s$$
, $F = \alpha + \beta$, Randers metric.

$$\phi(s) = 1/(1-s), F = \alpha^2/(\alpha-\beta),$$
 Matsumoto metric.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

An (α, β) -metric is expressed in the following form,

$$F = \alpha \phi(s), \quad s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(0) = 1, \quad \phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0,$$

where $b = \|\beta_x\|_{\alpha}$.

Special (α, β) -metrics:

$$\phi(s) = 1, F = \alpha$$
, Riemannian metric.

$$\phi(s) = 1 + s$$
, $F = \alpha + \beta$, Randers metric.

$$\phi(s) = 1/(1-s), F = \alpha^2/(\alpha-\beta),$$
 Matsumoto metric.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metr

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

The Relation

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introductio

Finsler Metri

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -N

The Relation

Projectively Flat (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Fl (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Projectively Flat (α, β) -Metrics

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metric

ag Curvature

insler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

Examples

rojective

To jectively Fla (α, β) -Metrics with Constant Clag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

-

An Open Problem

Projectively Flat (α, β) -Metrics

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + \alpha^{-1} \Theta \left(-2\alpha Q s_{0} + r_{00} \right) y^{i} + \Psi \left(-2\alpha Q s_{0} + r_{00} \right) b^{i},$$

where G_{α}^{i} is the geodesic coefficient of α and $s_{ij} = b_{i|j} - b_{j|i}$, $r_{ij} = b_{i|j} + b_{j|i}$, $s_{i0} = s_{ij}y^{j}$, $s_{0} = s_{i0}b^{i}$, $r_{00} = r_{ij}y^{i}y^{j}$ and

$$Q = \frac{\phi'}{\phi - s\phi'}$$

$$\Theta = \frac{\phi - s\phi'}{2\left((\phi - s\phi') + (b^2 - s^2)\phi''\right)} \cdot \frac{\phi'}{\phi} - s\Psi$$

$$\Psi = \frac{1}{2} \frac{\phi''}{(\phi - s\phi') + (b^2 - s^2)\phi''}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

Finsler Metri

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

Γhe Relation

Projectively Flat (α, β) -Metrics

Exampl

Projectively Flat (α, β) -Metrics with Constant Clag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

There are many projectively flat (α, β) -metrics which are trivial $(\beta \text{ is parallel with respect to } \alpha, \text{ then } \alpha \text{ is projectively flat})$ such as Matsumoto metric, etc. However there also exist many nontrivial ones.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

.

ag Curvature

insler Metrics

 α, β)-Metrics

he Relation

Projectively Flat (α, β) -Metrics

kample

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

There are many projectively flat (α, β) -metrics which are trivial $(\beta \text{ is parallel with respect to } \alpha, \text{ then } \alpha \text{ is projectively flat})$ such as Matsumoto metric, etc. However there also exist many nontrivial ones.

Proposition A Randers metric $F = \alpha + \beta$ is locally projectively flat if and only if α is locally projectively flat and β is closed.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics

lag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

amples

Projectively Flat α, β)-Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classificatio

An Open Problem

There are many projectively flat (α, β) -metrics which are trivial $(\beta \text{ is parallel with respect to } \alpha, \text{ then } \alpha \text{ is projectively flat})$ such as Matsumoto metric, etc. However there also exist many nontrivial ones.

Proposition A Randers metric $F = \alpha + \beta$ is locally projectively flat if and only if α is locally projectively flat and β is closed.

Theorem(Shen-Yildirim) Let $(\alpha + \beta)^2/\alpha$ be a Finsler metric on a manifold M. F is projectively flat if and only if

(i)
$$b_{i|j} = \tau \{ (1+2b^2)a_{ij} - 3b_ib_j \},$$

(ii) the geodesic coefficients G^i_{α} of α are in the form: $G^i_{\alpha} = \theta y^i - \tau \alpha^2 b^i$,

where $\tau = \tau(x)$ is a scalar function and $\theta = a_i(x)y^i$ is a 1-form on M.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

troduction

insler Metric

lag Curvatur

Projectively Flat Finsler Metrics

 (α, β) -Metrics

Projectively Flat (α, β) -Metrics

xampi

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (lpha,eta)-Metrics with Zero Flag Curvature

Classification

An Open Problem

Theorem (Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset \mathcal{U} in the n-dimensional Euclidean space \mathbb{R}^n $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and $\beta = b_i(x)y^i \neq 0$. Suppose that the following conditions: (a) β is not parallel with respect to α , (b) F is not of Randers type, and (c) $db \neq 0$ everywhere or b = constant on \mathcal{U} . Then F is projectively flat on \mathcal{U} if and only if the function $\phi = \phi(s)$ satisfies

$$\left\{1 + (k_1 + k_2 s^2)s^2 + k_3 s^2\right\} \phi''(s) = (k_1 + k_2 s^2) \left\{\phi(s) - s\phi'(s)\right\},$$

$$b_{i|j} = 2\tau \left\{(1 + k_1 b^2)a_{ij} + (k_2 b^2 + k_3)b_i b_j\right\},$$

$$G_{\alpha}^i = \xi y^i - \tau \left(k_1 \alpha^2 + k_2 \beta^2\right) b^i,$$

where $\tau = \tau(x)$ is a scalar function on \mathcal{U} and k_1, k_2 and k_3 are constants.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introductio

and Geodesics

lag Curvature

Projectively Flat Finsler Metrics

 α, β)-Metrics

Projectively Flat (α, β) -Metrics

xampi

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Examples: Projectively Flat Finsler Metrics with Constant Flag Curvature

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Dinalan Makai

Curvature

nsler Metrics

 (α, β) -Metrics

he Relation

rojectively Flat (α, β) -Metrics

Examples

rojectively Flat (α, β) -Metrics ith Constant lag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Examples: Projectively Flat Finsler Metrics with Constant Flag Curvature

 $\mathbf{K} = -\frac{1}{4}$. Funk metric Θ on the unit ball $B^n \subset \mathbb{R}^n$:

$$\Theta = \frac{\sqrt{(1-|x|^2)|y|^2+\langle x,y\rangle^2}}{1-|x|^2} + \frac{\langle x,y\rangle}{1-|x|^2},$$

where $y \in T_x \mathbf{B}^n \approx R^n$.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

ag Curvature

0) 35 ()

 (α, β) -wietrics

rojectively Flat

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Examples: Projectively Flat Finsler Metrics with Constant Flag Curvature

Constant Flag Curvature Benling Li

On a Class of Projectively Flat Finsler

Metrics with

ntroduction

ntroduction

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

 (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

. -

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

 $\mathbf{K} = -\frac{1}{4}$. Funk metric Θ on the unit ball $B^n \subset \mathbb{R}^n$:

$$\Theta = \frac{\sqrt{(1-|x|^2)|y|^2 + \langle x,y\rangle^2}}{1-|x|^2} + \frac{\langle x,y\rangle}{1-|x|^2},$$

where $y \in T_x \mathbf{B}^n \approx R^n$.

 $\mathbf{K} = \mathbf{0}$. Berwald's metric

$$B = \frac{(\sqrt{(1-|x|^2)|y|^2 + \langle x, y \rangle^2} + \langle x, y \rangle)^2}{(1-|x|^2)^2\sqrt{(1-|x|^2)|y|^2 + \langle x, y \rangle^2}},$$

where $y \in T_x \mathbf{B}^n \approx R^n$.

The Funk metric and Berwald's metric are related and they can be expressed in the form

$$\Theta = \bar{\alpha} + \bar{\beta}, \qquad B = \frac{(\tilde{\alpha} + \tilde{\beta})^2}{\tilde{\alpha}},$$

where

$$\bar{\alpha} := \frac{\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2}}{1 - |x|^2}, \quad \bar{\beta} := \frac{\langle x, y \rangle}{1 - |x|^2},$$

$$\tilde{\alpha} := \lambda \bar{\alpha}, \quad \tilde{\beta} := \lambda \bar{\beta}, \quad \lambda := \frac{1}{1 - |x|^2}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metric

lag Curvatur

Finsler Metrics

 (α, β) -Metrics

Γhe Relation

Projectively Flat (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

with Zero Flag Curvature

Classification

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Lemma If

then

$$\phi(s) = 1 + a_1 s + a_2 s^2 + a_3 s^3 + a_4 s^4 + a_5 s^5 + a_6 s^6 + a_7 s^7 + a_8 s^8 + o(s^8)$$
satisfies
$$\{1 + (k_1 + k_2 s^2) s^2 + k_3 s^2 \} \phi''(s) = (k_1 + k_2 s^2) \{ \phi(s) - s \phi'(s) \},$$

$$a_2 = \frac{k_1}{2}$$
, $a_3 = 0$, $a_5 = 0$, $a_7 = 0$,

$$a_4 = \frac{1}{12}(k_2 - k_1 k_3) - \frac{1}{8}k_1^2,$$

$$a_6 = -\frac{11}{120}(k_1 + \frac{4}{11}k_3)(k_2 - k_1 k_3) + \frac{1}{16}k_1^3,$$

$$a_8 = \frac{1}{56}(k_2 - k_1 k_3)(\frac{61}{12}k_1^2 + k_3^2) - \frac{5}{224}k_2^2 + \frac{31}{336}k_1 k_2 k_3 - \frac{47}{672}k_1^2 k_3^2 - \frac{5}{128}k_1^4.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

lag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metric

The Relation

rojectively Flat (α, β) -Metrics

xampies

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

Lemma (Li-Shen)Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset \mathbb{R}^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_i y^i \neq 0$. Suppose that F is not of Randers type and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with constant flag curvature K, then K=0.

Projectively Flat Finsler Metrics with Constant Flag Curvature

On a Class of

Benling Li

Projectively Flat (α, β) -Metrics with Constant

Flag Curvature

Lemma (Li-Shen)Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset \mathbb{R}^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_i y^i \neq 0$. Suppose that F is not of Randers type and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with constant flag curvature K, then K=0.

Sketch proof:

• β is parallel with respect to α .

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Projectively Flat (α, β) -Metrics

with Constant Flag Curvature

Lemma (Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset R^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that F is not of Randers type and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with constant flag curvature K, then K = 0.

Sketch proof:

• β is parallel with respect to α .

Then $G^i = G^i_{\alpha}$, which means α is projectively flat. By Beltrami theorem α has constant sectional curvature κ . If $\kappa \neq 0$, it's easy to see that F is a Riemannian metric. This is excluded. Thus K = 0.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

insler Metrics nd Geodesics

Projectively Fla

0) 35 / :

Dha Dalatian

ojectively Flag., β)-Metrics

amples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Lemma (Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset R^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that F is not of Randers type and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with constant flag curvature K, then K = 0.

Sketch proof:

• β is parallel with respect to α .

Then $G^i = G^i_{\alpha}$, which means α is projectively flat. By Beltrami theorem α has constant sectional curvature κ . If $\kappa \neq 0$, it's easy to see that F is a Riemannian metric. This is excluded. Thus K = 0.

• β is not parallel with respect to α .

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

nd Geodesics

Projectively Fla

 α, β)-Metrics

The Relation

rojectively F

xamples

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Lemma (Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset R^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that F is not of Randers type and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with constant flag curvature K, then K = 0.

Sketch proof:

• β is parallel with respect to α .

Then $G^i = G^i_{\alpha}$, which means α is projectively flat. By Beltrami theorem α has constant sectional curvature κ . If $\kappa \neq 0$, it's easy to see that F is a Riemannian metric. This is excluded. Thus K = 0.

• β is not parallel with respect to α . By a direct computation we get

$$K\alpha^2\phi^2 = \xi^2 - \xi_{x_m}y^m + \tau^2\alpha^2\Xi - \tau_{x_m}y^m\Xi^2 + 2\tau^2\alpha^2\Gamma,$$

where $\xi = \xi_i y^i$, $\tau = \tau(x)$,

$$\Xi := (1 + (k_1 + k_2 s^2) s^2 + k_3 s^2) \frac{\phi'}{\phi} - (k_1 + k_2 s^2) s,$$

$$\Gamma := (k_1 + k_2 s^2) s \Xi - \left\{ 1 + (k_1 + k_2 s^2) s^2 + k_3 s^2 \right\} \Xi_s.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

nalan Matri

lag Curvature

insler Metrics

 (α, β) -wietric

cojectively Fl $_{lpha},\,eta) ext{-Metrics}$

Examples

Projectively Flat (α, β) -Metrics

with Constant Flag Curvature Projectively Flat (α, β) -Metrics

Curvature

An Open Problem

dicatrix of $(\alpha + \beta)^2/\beta$

Special coordinate system: This is first used by Z. Shen.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finalan Matai

Geodesics

rojectively Fla insler Metrics

 (β) -Metrics

e Relation

ojectively F, β)-Metrics

amples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

lassification

An Open Problem

Special coordinate system: This is first used by Z. Shen.

Fix an arbitrary point $x_o \in \mathcal{U} \subset \mathbb{R}^n$. Make a change of coordinates: $(s, y^a) \to (y^i)$ by

$$y^1 = \frac{s}{\sqrt{b^2 - s^2}} \bar{\alpha}, \quad y^a = y^a,$$

where
$$\bar{\alpha} := \sqrt{\sum_{a=2}^{n} (y^a)^2}$$
. Then

$$\alpha = \frac{b}{\sqrt{b^2 - s^2}}\bar{\alpha}, \quad \beta = \frac{bs}{\sqrt{b^2 - s^2}}\bar{\alpha}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

rojectively Fl

α. β)-Metrics

 (α, β) -wiethes

Projectively Flat

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Special coordinate system: This is first used by Z. Shen.

Fix an arbitrary point $x_o \in \mathcal{U} \subset \mathbb{R}^n$. Make a change of coordinates: $(s, y^a) \to (y^i)$ by

$$y^1 = \frac{s}{\sqrt{b^2 - s^2}} \bar{\alpha}, \quad y^a = y^a,$$

where $\bar{\alpha} := \sqrt{\sum_{a=2}^{n} (y^a)^2}$. Then

$$\alpha = \frac{b}{\sqrt{b^2 - s^2}}\bar{\alpha}, \quad \beta = \frac{bs}{\sqrt{b^2 - s^2}}\bar{\alpha}.$$

And

$$\xi = \frac{s\xi_1}{\sqrt{b^2 - s^2}}\bar{\alpha} + \bar{\xi}_0, \quad \tau_{x^m}y^m = \frac{s\tau_1}{\sqrt{b^2 - s^2}}\bar{\alpha} + \bar{\tau}_0,$$

where $\bar{\xi}_0 := \xi_a y^a$, $\bar{\tau}_0 := \tau_{x^a} y^a$. Let

$$\xi_{ij} := \frac{1}{2} \left(\frac{\partial \xi_i}{\partial x^j} + \frac{\partial \xi_j}{\partial x^i} \right).$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

insler Metri

Flag Curvature

Finsler Metrics

 α, β)-Metrics

rojectively Flat (α, β) -Metrics

Examples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classificat

An Open Problem

$$\begin{split} \frac{Kb^2\phi^2}{b^2-s^2}\bar{\alpha}^2 &= \frac{\bar{\alpha}^2}{b^2-s^2}\Big\{s^2(\xi_1^2-\xi_{11})+\tau^2b^2\Xi^2-\tau_1bs\Xi+2\tau^2b^2\Gamma\Big\}\\ &+\frac{1}{\sqrt{b^2-s^2}}\Big\{2s\xi_1\bar{\xi}_0-2s\bar{\xi}_{10}-\bar{\tau}_0b\Xi\Big\}\bar{\alpha}+\bar{\xi}_0^2-\bar{\xi}_{00}. \end{split}$$

The above equation is equivalent to the two following equations

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metrics and Geodesics

rojectively Fl

 (α, β) -Metrics

The Peletion

rojectively Flat (α, β) -Metrics

amples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

$$\begin{split} \frac{Kb^2\phi^2}{b^2-s^2}\bar{\alpha}^2 &= \frac{\bar{\alpha}^2}{b^2-s^2}\Big\{s^2(\xi_1^2-\xi_{11})+\tau^2b^2\Xi^2-\tau_1bs\Xi+2\tau^2b^2\Gamma\Big\}\\ &+\frac{1}{\sqrt{b^2-s^2}}\Big\{2s\xi_1\bar{\xi_0}-2s\bar{\xi_{10}}-\bar{\tau_0}b\Xi\Big\}\bar{\alpha}+\bar{\xi_0^2}-\bar{\xi_{00}}. \end{split}$$

The above equation is equivalent to the two following equations

$$2s(\xi_1\bar{\xi}_0 - \bar{\xi}_{10}) - \bar{\tau}_0 b\Xi = 0,$$

$$\frac{1}{b^2 - s^2} \left\{ s^2 (\xi_1^2 - \xi_{11}) + \tau^2 b^2 \Xi^2 - \tau_1 b s \Xi + 2\tau^2 b^2 \Gamma - K b^2 \phi^2 \right\} \bar{\alpha}^2 + \bar{\xi}_0^2 - \bar{\xi}_{00} = 0.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

Finsler Metrics and Geodesics

rag Curvature

finsier Metrics

 (α, β) -Metrics

he Relation

 $, \beta)$ -Metrics

kamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classificat

An Open Problem

$$\begin{split} \frac{Kb^2\phi^2}{b^2-s^2}\bar{\alpha}^2 &=& \frac{\bar{\alpha}^2}{b^2-s^2}\Big\{s^2(\xi_1^2-\xi_{11})+\tau^2b^2\Xi^2-\tau_1bs\Xi+2\tau^2b^2\Gamma\Big\}\\ &+\frac{1}{\sqrt{b^2-s^2}}\Big\{2s\xi_1\bar{\xi}_0-2s\bar{\xi}_{10}-\bar{\tau}_0b\Xi\Big\}\bar{\alpha}+\bar{\xi}_0^2-\bar{\xi}_{00}. \end{split}$$

The above equation is equivalent to the two following equations

$$2s(\xi_1\bar{\xi}_0 - \bar{\xi}_{10}) - \bar{\tau}_0 b\Xi = 0,$$

$$\frac{1}{b^2 - s^2} \left\{ s^2 (\xi_1^2 - \xi_{11}) + \tau^2 b^2 \Xi^2 - \tau_1 b s \Xi + 2\tau^2 b^2 \Gamma - K b^2 \phi^2 \right\} \bar{\alpha}^2 + \bar{\xi}_0^2 - \bar{\xi}_{00} = 0.$$

By Taylor expansion of ϕ

$$\phi = 1 + a_1 s + a_2 s^2 + a_4 s^4 + a_6 s^6 + a_8 s^8 + o(s^8)$$

we eventually proof K = 0.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

and Geodesics

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

$$\begin{split} \frac{Kb^2\phi^2}{b^2-s^2}\bar{\alpha}^2 &=& \frac{\bar{\alpha}^2}{b^2-s^2} \Big\{ s^2(\xi_1^2-\xi_{11}) + \tau^2b^2\Xi^2 - \tau_1bs\Xi + 2\tau^2b^2\Gamma \Big\} \\ &+ \frac{1}{\sqrt{b^2-s^2}} \Big\{ 2s\xi_1\bar{\xi_0} - 2s\bar{\xi_{10}} - \bar{\tau_0}b\Xi \Big\} \bar{\alpha} + \bar{\xi}_0^2 - \bar{\xi_{00}}. \end{split}$$

The above equation is equivalent to the two following equations

$$2s(\xi_1\bar{\xi}_0 - \bar{\xi}_{10}) - \bar{\tau}_0 b\Xi = 0,$$

$$\frac{1}{b^2 - s^2} \left\{ s^2 (\xi_1^2 - \xi_{11}) + \tau^2 b^2 \Xi^2 - \tau_1 b s \Xi + 2\tau^2 b^2 \Gamma - K b^2 \phi^2 \right\} \bar{\alpha}^2 + \bar{\xi}_0^2 - \bar{\xi}_{00} = 0.$$

By Taylor expansion of ϕ

$$\phi = 1 + a_1 s + a_2 s^2 + a_4 s^4 + a_6 s^6 + a_8 s^8 + o(s^8)$$

we eventually proof K = 0.

Remark: In this Lemma, we used the equivalent conditions of projectively flat (α, β) -metrics.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

and Geodesics

Flag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classifica

An Open Problem

indicatrix of $(\alpha + \beta)^2$

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Lemma(Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset R^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that F is not of Randers type, β is not parallel with respect to α and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with K = 0, then

$$\phi = \frac{(\sqrt{1 + ks^2 + \epsilon s})^2}{\sqrt{1 + ks^2}},$$

where
$$k = \frac{1}{5}(3k_1 + 2k_3)$$
 and $\epsilon = \pm \frac{2}{\sqrt{5}}\sqrt{k_1 - k_3}$.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

Flag Curvature

Finsler Metrics

 (α, β) -wietrics

i ne Relatior

Projectively Flat (α, β) -Metrics

Examples

Projectively Flat lpha, eta)-Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Lemma(Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset $\mathcal{U} \subset R^n$ $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that F is not of Randers type, β is not parallel with respect to α and $db \neq 0$ everywhere or b = constant on \mathcal{U} . If F is projectively flat with K = 0, then

$$\phi = \frac{(\sqrt{1+ks^2}+\epsilon s)^2}{\sqrt{1+ks^2}},$$

where $k = \frac{1}{5}(3k_1 + 2k_3)$ and $\epsilon = \pm \frac{2}{\sqrt{5}}\sqrt{k_1 - k_3}$.

Sketch proof: By assumption that K = 0, we have

$$3\left\{-a_1^4 s^2 - (1 + 2k_3 s^2 + k_1 s^2 + 2k_2 s^4)a_1^2 + (k_1 + k_2 s^2)^2 s^2\right\} \tau^2 \phi^2 + 6\left\{sa_1^2 - s(k_1 + k_2 s^2)\right\} D(s)\tau^2 \phi' \phi + 3\tau^2 D(s)^2 \phi'^2 = 0,$$

where $D(s) = 1 + (k_1 + k_2 s^2) s^2 + k_3 s^2$. By discuss this equation we get the result.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

nd Geodesi

Flag Curvature

Projectively Flat Finsler Metrics

 α, β)-wietrics

rojectively F

amples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2$

Classification

By the above two lemmas we obtain the following. Theorem(Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset \mathcal{U} in the n-dimensional Euclidean space R^n $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that $db \neq 0$ everywhere or b = constant on \mathcal{U} . Then F is projectively flat with constant flag curvature K if and only if one of the following holds

- (i) α is projectively flat and β is parallel with respect to α ;
- (ii) $F = \sqrt{\alpha^2 + k\beta^2} + \epsilon\beta$ is projectively flat with constant flag curvature K < 0, where k and $\epsilon \neq 0$ are constants;
- (iii) $F = (\sqrt{\alpha^2 + k\beta^2} + \epsilon\beta)^2 / \sqrt{\alpha^2 + k\beta^2}$ is projectively flat with K = 0, where k and $\epsilon \neq 0$ are constants.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

Flag Curvature

Finsler Metrics

Projectively Fl

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Classification

By the above two lemmas we obtain the following. Theorem(Li-Shen) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an open subset \mathcal{U} in the n-dimensional Euclidean space R^n $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ and $\beta = b_iy^i \neq 0$. Suppose that $db \neq 0$ everywhere or b = constant on \mathcal{U} . Then F is projectively flat with constant flag curvature K if and only if one of the following holds

- (i) α is projectively flat and β is parallel with respect to α ;
- (ii) $F = \sqrt{\alpha^2 + k\beta^2} + \epsilon\beta$ is projectively flat with constant flag curvature K < 0, where k and $\epsilon \neq 0$ are constants;
- (iii) $F = (\sqrt{\alpha^2 + k\beta^2} + \epsilon\beta)^2 / \sqrt{\alpha^2 + k\beta^2}$ is projectively flat with K = 0, where k and $\epsilon \neq 0$ are constants.
- It is a trivial fact that if F is trivial and the flag curvature K = constant, then it is either Riemannian $(K \neq 0)$ or locally Minkowskian (K = 0). (by S. Numata).

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

and Geodesics

insler Metrics

he Poletion

rojectively Fl

kamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2 / \epsilon$

• The Finsler metric in (ii) is of Randers type, i.e.,

$$F = \bar{\alpha} + \bar{\beta},$$

where $\bar{\alpha} := \sqrt{\alpha^2 + k\beta^2}$ and $\bar{\beta} := \epsilon \beta$.

Shen proved that a Finsler metric in this form is projectively flat with constant flag curvature if and only if it is locally Minkowskian or it is locally isometric to a generalized Funk metric

$$F = c(\bar{\alpha} + \bar{\beta})$$

on the unit ball $B^n \subset R^n$, where c > 0 is a constant, and

$$\bar{\alpha}: = \frac{\sqrt{(1-|x|^2)|y|^2 + \langle x, y \rangle^2}}{1-|x|^2}$$
 (1)

$$\bar{\beta}: = \pm \left\{ \frac{\langle x, y \rangle}{1 - |x|^2} + \frac{\langle a, y \rangle}{1 + \langle a, x \rangle} \right\},$$
 (2)

where $a \in \mathbb{R}^n$ is a constant vector.

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

Finsler Metri

lag Curvature

Projectively Flat Finsler Metrics

a, p)-wictires

110 100100101

Projectively Flat(lpha,eta)-Metrics

kamples

 (α, β) -Metrics with Constant Flag Curvature

Projectively Flat(lpha,eta)-Metrics with Zero Flag Curvature

Classification

An Open Problem

• The Finsler metric in (iii) is in the form

$$F = (\tilde{\alpha} + \tilde{\beta})^2 / \tilde{\alpha},$$

where $\tilde{\alpha} := \sqrt{\alpha^2 + k \beta^2}$ and $\tilde{\beta} := \epsilon \beta$. It is proved (by Mo, Shen , Yang and Yildirim) that a non-Minkowkian metric $F = (\tilde{\alpha} + \tilde{\beta})^2/\tilde{\alpha}$ is projectively flat with K = 0 if and only if it is, after scaling on x, locally isometric to a metric

$$F = c(\tilde{\alpha} + \tilde{\beta})^2/\tilde{\alpha}$$

on the unit ball $B^n \subset R^n$, where c = constant, $\tilde{\alpha} = \lambda \bar{\alpha}$ and $\tilde{\beta} = \lambda \bar{\beta}$, where $\bar{\alpha}$ and $\bar{\beta}$ are given in (1) and (2), and

$$\lambda := \frac{(1 + \langle a, x \rangle)^2}{1 - |x|^2}.$$

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

ntroduction

insler Metric

ag Curvature

Projectively Flat Finsler Metrics

 (α, β) -Metrics

The Relation

Projectively Flat α, β)-Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

An Open Problem

Is there any metric $F = (\alpha + \beta)^2/\alpha$ of constant flag curvature which is not locally projectively flat?

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Finsler Metri

lag Curvature

Finsler Metrics

 (α, β) -Metrics

The Relation

rojectively Flat (α, β) -Metrics

xamples

Projectively Flat (α, β) -Metrics with Constant Clag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Indicatrix of
$$F = (\alpha + \beta)^2 / \alpha$$

Indicatrix of F: Given a Minkowski space (V, F), $S_F := \Big\{ y \in V | F(y) = 1 \Big\}.$

Constant Flag Curvature Benling Li

On a Class of

Projectively Flat Finsler Metrics with

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

T . 1 . . .

Introduction

d Geodesics

insler Metrics

 (α, β) -Metrics

Projectively Flat

xamples

Examples Projective

Projectively F18 (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

b = -0.7

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

b = -0.6

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

ntroduction

ntroduction

insler Metrics
and Geodesics

Finsler Metrics

 (α, β) -Metrics

Projectively Flat

xamples

rojective (α, β) -Met

ith Constant ag Curvature rojectively Flat α , β)-Metrics

Classification

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Introduction

Introduction

nd Geodesics

Finsler Metrics

 (α, β) -Metrics

Projectively Flat (α, β) -Metrics

kamples

rojective: (α, β) -Met

th Constant ag Curvature ojectively Fla β -Metrics

An Open Problem

b = -0.1

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

Benling Li

Introduction

id Geodesics

rojectively Fl Sinsler Metrics

 (α, β) -Metrics

Projectively Flat

xamples

Projective

ith Constant lag Curvature rojectively Fla

C1 - - - : 6: - - 4: - -

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

b = 0

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

T . 1 . . .

Introduction

nd Geodesics

insler Metrics

 (α, β) -Metrics

Projectively Flat

xamples

Examples Projective

> ith Constant lag Curvature

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

Benling Li

T / 1 / 1

Introduction

nd Geodesics

rojectively Fla

 (α, β) -Metrics

The Relation

x,β)-Met xamples

xamples

rojectively (α, β) -Metricith Constan

lag Curvature rojectively Flat (α, β) -Metrics ith Zero Flag

Classification

An Open Problem

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

Benling Li

ntroduction

nd Geodesics

insler Metrics

 (α, β) -Metrics

Projectively Flat

xamples

Projectively F α, β)-Metrics with Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Indicatrix of $F = (\alpha + \beta)^2 / \alpha$

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

Benling Li

neroduction

id Geodesics

insler Metrics

 (α, β) -Metrics

Projectively Flat (α, β) -Metrics

xamples

Projectively Flance, (α, β) -Metrics with Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

b = 0.5

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

b = 0.6

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

Introduction

id Geodesics

insler Metrics

 (α, β) -Metrics

The Kelation Projectively Fla

Examples

Projectively Fla (α, β) -Metrics with Constant Flag Curvature

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

$$F = (\alpha + \beta)^2/\alpha$$
, $\alpha = \sqrt{(y^1)^2 + (y^2)^2}$, $\beta = b(x)y^1$. The indicatrix of F :

b = 0.7

On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature

Benling Li

Introduction

ntroduction

id Geodesics

rojectively Fla insler Metrics

 (α, β) -Metrics

he Relation

Projectively Flat

Examples

Projectively I (α, β) -Metrics with Constant

Projectively Flat (α, β) -Metrics with Zero Flag Curvature

Classification

An Open Problem

Flat Finsler Metrics with Constant Flag Curvature Benling Li

On a Class of Projectively

Flat Finsler Metrics with Constant Flag Curvature Benling Li

On a Class of Projectively

Benling Li

Introduction

and Geodesics

riag Curvature

Finsler Metrics

 (α, β) -Metrics

The Relatio

Projectively Flat (α, β) -Metrics

amples

rojectively Fl (α, β) -Metrics ith Constant

rojectively Flat (α, β) -Metrics

Classification

An Open Problem

ndicatrix of $F = (\alpha + \beta)^2 / \alpha$

Thank you very much!